7 research outputs found

    Detecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks

    Get PDF
    With the growing popularity of cryptocurrencies, which are an important part of day-to-day transactions over the Internet, the interest in being part of the so-called cryptomining service has attracted the attention of investors who wish to quickly earn profits by computing powerful transactional records towards the blockchain network. Since most users cannot afford the cost of specialized or standardized hardware for mining purposes, new techniques have been developed to make the latter easier, minimizing the computational cost required. Developers of large cryptocurrency houses have made available executable binaries and mainly browser-side scripts in order to authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles to complete a proof of work. However, malicious actors have taken advantage of this capability to insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack, also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there are alternative solutions, mainly using machine learning techniques, one of the important issues to be solved is still the correct characterization of network and host samples, in the face of the increasing escalation of new tampering or obfuscation techniques. This paper develops a method that performs a fingerprinting technique to detect possible malicious sites, which are then characterized by an autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing the classification power by means of a deep dense neural network

    A dense neural network approach for detecting clone ID attacks on the RPL protocol of the IoT

    Get PDF
    At present, new data sharing technologies, such as those used in the Internet of Things (IoT) paradigm, are being extensively adopted. For this reason, intelligent security controls have become imperative. According to good practices and security information standards, particularly those regarding security in depth, several defensive layers are required to protect information assets. Within the context of IoT cyber-attacks, it is fundamental to continuously adapt new detection mechanisms for growing IoT threats, specifically for those becoming more sophisticated within mesh networks, such as identity theft and cloning. Therefore, current applications, such as Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), and Security Information and Event Management Systems (SIEM), are becoming inadequate for accurately handling novel security incidents, due to their signature-based detection procedures using the matching and flagging of anomalous patterns. This project focuses on a seldom-investigated identity attack—the Clone ID attack—directed at the Routing Protocol for Low Power and Lossy Networks (RPL), the underlying technology for most IoT devices. Hence, a robust Artificial Intelligence-based protection framework is proposed, in order to tackle major identity impersonation attacks, which classical applications are prone to misidentifying. On this basis, unsupervised pre-training techniques are employed to select key characteristics from RPL network samples. Then, a Dense Neural Network (DNN) is trained to maximize deep feature engineering, with the aim of improving classification results to protect against malicious counterfeiting attempts

    FASSVid: Fast and Accurate Semantic Segmentation for Video Sequences

    No full text
    Most of the methods for real-time semantic segmentation do not take into account temporal information when working with video sequences. This is counter-intuitive in real-world scenarios where the main application of such methods is, precisely, being able to process frame sequences as quickly and accurately as possible. In this paper, we address this problem by exploiting the temporal information provided by previous frames of the video stream. Our method leverages a previous input frame as well as the previous output of the network to enhance the prediction accuracy of the current input frame. We develop a module that obtains feature maps rich in change information. Additionally, we incorporate the previous output of the network into all the decoder stages as a way of increasing the attention given to relevant features. Finally, to properly train and evaluate our methods, we introduce CityscapesVid, a dataset specifically designed to benchmark semantic video segmentation networks. Our proposed network, entitled FASSVid improves the mIoU accuracy performance over a standard non-sequential baseline model. Moreover, FASSVid obtains state-of-the-art inference speed and competitive mIoU results compared to other state-of-the-art lightweight networks, with significantly lower number of computations. Specifically, we obtain 71% of mIoU in our CityscapesVid dataset, running at 114.9 FPS on a single NVIDIA GTX 1080Ti and 31 FPS on the NVIDIA Jetson Nano embedded board with images of size 1024×2048 and 512×1024, respectively

    ReinforSec: An Automatic Generator of Synthetic Malware Samples and Denial-of-Service Attacks through Reinforcement Learning

    No full text
    In recent years, cybersecurity has been strengthened through the adoption of processes, mechanisms and rapid sources of indicators of compromise in critical areas. Among the most latent challenges are the detection, classification and eradication of malware and Denial of Service Cyber-Attacks (DoS). The literature has presented different ways to obtain and evaluate malware- and DoS-cyber-attack-related instances, either from a technical point of view or by offering ready-to-use datasets. However, acquiring fresh, up-to-date samples requires an arduous process of exploration, sandbox configuration and mass storage, which may ultimately result in an unbalanced or under-represented set. Synthetic sample generation has shown that the cost associated with setting up controlled environments and time spent on sample evaluation can be reduced. Nevertheless, the process is performed when the observations already belong to a characterized set, totally detached from a real environment. In order to solve the aforementioned, this work proposes a methodology for the generation of synthetic samples of malicious Portable Executable binaries and DoS cyber-attacks. The task is performed via a Reinforcement Learning engine, which learns from a baseline of different malware families and DoS cyber-attack network properties, resulting in new, mutated and highly functional samples. Experimental results demonstrate the high adaptability of the outputs as new input datasets for different Machine Learning algorithms

    ReinforSec: An Automatic Generator of Synthetic Malware Samples and Denial-of-Service Attacks through Reinforcement Learning

    No full text
    In recent years, cybersecurity has been strengthened through the adoption of processes, mechanisms and rapid sources of indicators of compromise in critical areas. Among the most latent challenges are the detection, classification and eradication of malware and Denial of Service Cyber-Attacks (DoS). The literature has presented different ways to obtain and evaluate malware- and DoS-cyber-attack-related instances, either from a technical point of view or by offering ready-to-use datasets. However, acquiring fresh, up-to-date samples requires an arduous process of exploration, sandbox configuration and mass storage, which may ultimately result in an unbalanced or under-represented set. Synthetic sample generation has shown that the cost associated with setting up controlled environments and time spent on sample evaluation can be reduced. Nevertheless, the process is performed when the observations already belong to a characterized set, totally detached from a real environment. In order to solve the aforementioned, this work proposes a methodology for the generation of synthetic samples of malicious Portable Executable binaries and DoS cyber-attacks. The task is performed via a Reinforcement Learning engine, which learns from a baseline of different malware families and DoS cyber-attack network properties, resulting in new, mutated and highly functional samples. Experimental results demonstrate the high adaptability of the outputs as new input datasets for different Machine Learning algorithms

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore